Innovation and technology nurture each other.

We harness the power of data for better decision making within an innovative organizational culture, through our team of Data Architects, Data Scientists and Data Engineers.

This evolves into gigantic volumes of data, which using the tools provided by the cloud allows us not only to improve its analysis but also to implement Machine Learning and AI to increase business intelligence.

Intelligent Forecasting

AI solution that allows the forecasting of business events in advance in order to plan improvements and actions that optimize results.

Data Lakes

Business analysis, manage diverse data sources, and achieve a better understanding of the world through these centralized repositories.

Master Data Optimization

The Master Data Optimization solution uses Machine Learning to automate the creation, remediation and continuous maintenance of master databases.

HealthBot

Virtual health channel that uses cognitive technologies such as artificial intelligence, in order to optimize and speed up the times of health institutions.

Generative AI

Discover the technological disruption that allows you to take your business to a new level and achieve maximum productivity.

Intelligent Automation

Robotic Process Automation (RPA) and Artificial Intelligence that empower a rapid automation of end-to-end business processes and accelerate digital transformation.

Nubiral Cognitive AI Bot

Virtual conversational assistant based on Artificial Intelligence (AI) that enables real-time file processing.

Intelligent Document Processing

An AI solution that allows extracting information from documents and incorporating it into an automatic process, using OCR technology.

Expert help to manage infrastructure and data

This important Argentine energy company chose Nubiral to obtain high-level support for its Oracle solutions and an advanced monitoring system for its critical IT assets.

Read more

Optimal infrastructure monitoring with Zabbix

A single platform and a single visualization to gain efficiency when managing the more than 1,600 devices of this energy company with a solid presence in Latin America and more than 100 years in the industry.

Read more

Modernizing DevOps to take agility to the next level

This leading Colombian company in the hydrocarbon transportation and logistics industry is now able to respond quickly to the demands of a fast-moving market.

Read more

New data platform with analytics and machine learning

The implementation of Microsoft Fabric enables this company in charge of coordinating the generation, transmission and distribution of power in Argentina to capitalize on the value of its data and even generate new monetization alternatives.

Read more
Blog

Microsoft Fabric on Azure: Best practices for migration

The successful and careful migration of data to Microsoft Fabric on the Azure platform allows maximizing the use of data for business benefit.

Read more
eBooks

Banking & Fintech: How to integrate GenAI in fraud detection

A guide for financial firms to discover the power of this new technology to optimize their fraud detection strategies.

Read more
Papers

Banking and Fintech: How to get value from emerging technologies?

A guide for companies to start capitalizing on their investments in new technologies now.

Read more
Whitepapers

Machine learning recommender systems in digital media companies

Advances in machine learning enable digital media companies to improve their recommender systems and optimize user experience.

Read more

Learn about our architecture that combines at least one public and one private cloud to deliver the highest levels of scalability, flexibility, and performance.

Deployment of AWS Control Tower and migration of services to Openshift

A major bank needed to migrate its workloads to the cloud and decided to rely on Nubiral for the initial configuration in AWS.

Read more

Application modernization by migrating to the AWS cloud

Migration to the AWS Cloud at Telecom Argentina, modernizing obsolete applications with a focus on operational excellence.

Read more

Modernization of multimedia content with AWS Migration

Successful migration to AWS cloud to modernize Claro Video’s multimedia content infrastructure.

Read more

Migration to AWS by a major Japanese automobile company

The smooth migration of Toyota to AWS unleashes performance, cost efficiency, and user satisfaction.

Read more
Blog

EC2 & AWS: Powering business in the cloud

A tool that offers flexibility, scalability and efficiency, and could become the keystone to take your business to a new level.

Read more
eBooks

Cloud 4.0: A phenomenon in exponential growth

A tour of the main opportunities that arise from a correct and timely migration of workloads to the cloud, and the trends that are being visualized in the cloud universe.

Read more
Papers
04 October , 2022

Cloud 4.0: A phenomenon in exponential growth

A tour of the main opportunities that arise from a correct and timely migration of workloads to the cloud, and the trends that are being visualized in the cloud universe.

Read more

Application migration, optimization, efficiency, security, analytics and implementation services, with the aim of simplifying and accelerating the adoption of the latest IT trends in the market.

Planning and Consulting

  • Evaluation and Planning
  • Adoption Strategy Consultancy

Test

  • Test Automation

Execution

  • Design and implementation of CI/CD Pipeline
  • Automation and implementation of processes

App Dev

  • Code (JavaScript, Go, Python)

Development to integrate Gala chatbot into the CloudGuru educational platform

The client needed to evolve their Gala chatbot so that end users could consume information from their centralized documentation platform.

Read more

Migration of CI/CD to Github

Important bank in Colombia migrates from GitLab to GitHub Enterprise and trains its staff for efficient adoption.

Read more

Migration of CI/CD to Github

Migration and Configuration of GitHub Enterprise Server for a major financial group, focused on modernizing its on-premise CI/CD structure.

Read more

Telecommunications modernization with AWS technologies

A leading telecommunications company modernizes its applications to respond more quickly and agilely to market changes.

Read more
Blog

GitHub: Features for fintech web application development

This powerful tool constitutes a complete ecosystem that boosts efficiency and collaboration in all aspects of the software development cycle.

Read more
eBooks

Agile & DevOps

A review of the meanings of each of these concepts, how they integrate with each other and what benefits they bring.

Read more

We scale to environments with thousands of items monitored simultaneously.
We also capture data of systems and applications over time to make proactive decisions and to anticipate disruptions in business services.

  • Zabbix Architecture and Implementation
  • Data & Analytics Monitoring

Implementation of monitoring solution with Zabbix

Private bank implements comprehensive Observability solution with Nubiral to optimize and gain greater visibility of its Infrastructure health.

Read more

Implementation of OpenSearch

Improving data observability and security at a major bank with AWS OpenSearch.

Read more

Implementation of OpenSearch

One of the leading banks in Chile utilizes the most advanced AWS services to work on the ingestion, storage, detection, and predictive models of data from cybersecurity intelligence sources.

Read more

Monitoring solution upgrade using Zabbix

Migration of monitoring tool to an automated system for host discovery, dashboards, and scalability over time.

Read more
Blog

Why should companies implement observability solutions?

In addition to anticipating and preventing IT infrastructure problems that impact the business, this strategy is key to boosting the user experience.

Read more
eBooks

Compliance: the evolution of monitoring

A key paradigm for anticipating and solving problems in increasingly complex IT infrastructures.

Read more
Whitepapers

OpenSearch and its log agents

OpenSearch is a comprehensive solution for centralizing and analyzing logs from various sources, ideal for managing complex IT scenarios.

Read more

We help innovate by preparing our clients against current cyber threats.

We fulfill the responsibility of protecting data to maintain trust and comply with regulations.

  • Cloud Assessment & Consulting
  • Security Frameworks & Best Practices
  • Penetration Testing
  • Cloud Security
  • Governance, Risk & Compliance
  • DevSecOps
Blog

Cybersecurity: A key pillar for a 360° digital experience

Mitigating risks linked to cyberattacks and protecting data is essential to survive and lead in the current era of digital transformation.

Read more
Whitepapers

Cybersecurity in your company: The 360º digital solution from Nubiral

How to develop a cybersecurity plan? Which are the main threats? Which are the best and most modern technologies to face these threats?

Read more

Microsoft Fabric on Azure: Best practices for migration

The successful and careful migration of data to Microsoft Fabric on the Azure platform allows maximizing the use of data for business benefit.

Read more

Why should companies implement observability solutions?

In addition to anticipating and preventing IT infrastructure problems that impact the business, this strategy is key to boosting the user experience.

Read more

Generative AI in Oil & Gas: 5 highly complex use cases

Key applications of this new technology that contribute sustainably to the progress of the sector.

Read more

Data augmentation in images: Uses and benefits

The strategy of creating synthetic data, known as data augmentation in images, is key to obtaining the maximum added value from computer vision.

Read more

Banking & Fintech: How to integrate GenAI in fraud detection

A guide for financial firms to discover the power of this new technology to optimize their fraud detection strategies.

Read more

Transform your business with the power of Azure OpenAI Service

How to quickly and easily create your own Copilot and Generative AI applications.

Read more

GenAI use cases with Amazon Bedrock

Discover the potential of digital transformation with Generative AI.

Read more

MLOps: powering the value of machine learning

A comprehensive guide to MLOps, a key discipline that guarantees the success of Machine Learning (ML) projects in organizations.

Read more

Connect+ is a great tool to incorporate knowledge and stay up to date with the latest technological developments.

Access new innovative audiovisual content, quickly and easily. Explore and get to know the technological universe in a different and agile way!

Machine learning recommender systems in digital media companies

Advances in machine learning enable digital media companies to improve their recommender systems and optimize user experience.

Read more

Cybersecurity in your company: The 360º digital solution from Nubiral

How to develop a cybersecurity plan? Which are the main threats? Which are the best and most modern technologies to face these threats?

Read more

Microsoft Fabric Guide: Use case end-to-end Deployment

Banks and financial services companies can benefit in numerous ways by deploying Microsoft Fabric.

Read more

How to Deploy Microsoft Fabric in Multicloud Infrastructures

Microsoft Fabric’s data analytics combined with the power of the multi-cloud architecture, drives decision making and empowers users.

Read more

AWS + Nubiral

As an Advanced Consulting Partner of the AWS Partner Network, we think outside the box, daring to go where no one has gone before.
We constantly challenge ourselves to be better, providing your company with AWS solutions in a holistic and tailored way.

Microsoft + Nubiral

As Cloud Gold Partner, we work together with Microsoft every day to offer our clients the most innovative solutions based on the different microservices and capabilities that the Azure cloud offers.
Our team is constantly training and certifying on Azure’s services.

Zabbix + Nubiral

We scale to environments with thousands of items monitored simultaneously.
We also capture data of systems and applications over time to make proactive decisions and to anticipate disruptions in business services.

Diligent + Nubiral

Nubiral and Diligent join to present a revolutionary solution that will transform the way organizations manage their GRC (Governance, Risk, and Compliance) processes.

Data
& Innovation

General Info

Innovation and technology nurture each other.

We harness the power of data for better decision making within an innovative organizational culture, through our team of Data Architects, Data Scientists and Data Engineers.

This evolves into gigantic volumes of data, which using the tools provided by the cloud allows us not only to improve its analysis but also to implement Machine Learning and AI to increase business intelligence.

Solutions

Intelligent Forecasting

AI solution that allows the forecasting of business events in advance in order to plan improvements and actions that optimize results.

Data Lakes

Business analysis, manage diverse data sources, and achieve a better understanding of the world through these centralized repositories.

Master Data Optimization

The Master Data Optimization solution uses Machine Learning to automate the creation, remediation and continuous maintenance of master databases.

HealthBot

Virtual health channel that uses cognitive technologies such as artificial intelligence, in order to optimize and speed up the times of health institutions.

Generative AI

Discover the technological disruption that allows you to take your business to a new level and achieve maximum productivity.

Intelligent Automation

Robotic Process Automation (RPA) and Artificial Intelligence that empower a rapid automation of end-to-end business processes and accelerate digital transformation.

Nubiral Cognitive AI Bot

Virtual conversational assistant based on Artificial Intelligence (AI) that enables real-time file processing.

Intelligent Document Processing

An AI solution that allows extracting information from documents and incorporating it into an automatic process, using OCR technology.

Success Stories

Expert help to manage infrastructure and data

This important Argentine energy company chose Nubiral to obtain high-level support for its Oracle solutions and an advanced monitoring system for its critical IT assets.

Read more

Optimal infrastructure monitoring with Zabbix

A single platform and a single visualization to gain efficiency when managing the more than 1,600 devices of this energy company with a solid presence in Latin America and more than 100 years in the industry.

Read more

Modernizing DevOps to take agility to the next level

This leading Colombian company in the hydrocarbon transportation and logistics industry is now able to respond quickly to the demands of a fast-moving market.

Read more

New data platform with analytics and machine learning

The implementation of Microsoft Fabric enables this company in charge of coordinating the generation, transmission and distribution of power in Argentina to capitalize on the value of its data and even generate new monetization alternatives.

Read more

Connect

Blog

Microsoft Fabric on Azure: Best practices for migration

The successful and careful migration of data to Microsoft Fabric on the Azure platform allows maximizing the use of data for business benefit.

Read more
eBooks

Banking & Fintech: How to integrate GenAI in fraud detection

A guide for financial firms to discover the power of this new technology to optimize their fraud detection strategies.

Read more
Papers

Banking and Fintech: How to get value from emerging technologies?

A guide for companies to start capitalizing on their investments in new technologies now.

Read more
Whitepapers

Machine learning recommender systems in digital media companies

Advances in machine learning enable digital media companies to improve their recommender systems and optimize user experience.

Read more

Hybrid
Multi Cloud

General Info

Learn about our architecture that combines at least one public and one private cloud to deliver the highest levels of scalability, flexibility, and performance.

Success Stories

Deployment of AWS Control Tower and migration of services to Openshift

A major bank needed to migrate its workloads to the cloud and decided to rely on Nubiral for the initial configuration in AWS.

Read more

Application modernization by migrating to the AWS cloud

Migration to the AWS Cloud at Telecom Argentina, modernizing obsolete applications with a focus on operational excellence.

Read more

Modernization of multimedia content with AWS Migration

Successful migration to AWS cloud to modernize Claro Video’s multimedia content infrastructure.

Read more

Migration to AWS by a major Japanese automobile company

The smooth migration of Toyota to AWS unleashes performance, cost efficiency, and user satisfaction.

Read more

Connect

Blog

EC2 & AWS: Powering business in the cloud

A tool that offers flexibility, scalability and efficiency, and could become the keystone to take your business to a new level.

Read more
eBooks

Cloud 4.0: A phenomenon in exponential growth

A tour of the main opportunities that arise from a correct and timely migration of workloads to the cloud, and the trends that are being visualized in the cloud universe.

Read more
Papers
04 October , 2022

Cloud 4.0: A phenomenon in exponential growth

A tour of the main opportunities that arise from a correct and timely migration of workloads to the cloud, and the trends that are being visualized in the cloud universe.

Read more

DevOps
& App Evolution

General Info

Application migration, optimization, efficiency, security, analytics and implementation services, with the aim of simplifying and accelerating the adoption of the latest IT trends in the market.

Solutions

Planning and Consulting

  • Evaluation and Planning
  • Adoption Strategy Consultancy

Test

  • Test Automation

Execution

  • Design and implementation of CI/CD Pipeline
  • Automation and implementation of processes

App Dev

  • Code (JavaScript, Go, Python)

Success Stories

Development to integrate Gala chatbot into the CloudGuru educational platform

The client needed to evolve their Gala chatbot so that end users could consume information from their centralized documentation platform.

Read more

Migration of CI/CD to Github

Important bank in Colombia migrates from GitLab to GitHub Enterprise and trains its staff for efficient adoption.

Read more

Migration of CI/CD to Github

Migration and Configuration of GitHub Enterprise Server for a major financial group, focused on modernizing its on-premise CI/CD structure.

Read more

Telecommunications modernization with AWS technologies

A leading telecommunications company modernizes its applications to respond more quickly and agilely to market changes.

Read more

Connect

Blog

GitHub: Features for fintech web application development

This powerful tool constitutes a complete ecosystem that boosts efficiency and collaboration in all aspects of the software development cycle.

Read more
eBooks

Agile & DevOps

A review of the meanings of each of these concepts, how they integrate with each other and what benefits they bring.

Read more

Monitoring
& Intelligence

General Info

We scale to environments with thousands of items monitored simultaneously.
We also capture data of systems and applications over time to make proactive decisions and to anticipate disruptions in business services.

Solutions

  • Zabbix Architecture and Implementation
  • Data & Analytics Monitoring

Success Stories

Implementation of monitoring solution with Zabbix

Private bank implements comprehensive Observability solution with Nubiral to optimize and gain greater visibility of its Infrastructure health.

Read more

Implementation of OpenSearch

Improving data observability and security at a major bank with AWS OpenSearch.

Read more

Implementation of OpenSearch

One of the leading banks in Chile utilizes the most advanced AWS services to work on the ingestion, storage, detection, and predictive models of data from cybersecurity intelligence sources.

Read more

Monitoring solution upgrade using Zabbix

Migration of monitoring tool to an automated system for host discovery, dashboards, and scalability over time.

Read more

Connect

Blog

Why should companies implement observability solutions?

In addition to anticipating and preventing IT infrastructure problems that impact the business, this strategy is key to boosting the user experience.

Read more
eBooks

Compliance: the evolution of monitoring

A key paradigm for anticipating and solving problems in increasingly complex IT infrastructures.

Read more
Whitepapers

OpenSearch and its log agents

OpenSearch is a comprehensive solution for centralizing and analyzing logs from various sources, ideal for managing complex IT scenarios.

Read more

Cybersecurity

General Info

We help innovate by preparing our clients against current cyber threats.

We fulfill the responsibility of protecting data to maintain trust and comply with regulations.

Solutions

  • Cloud Assessment & Consulting
  • Security Frameworks & Best Practices
  • Penetration Testing
  • Cloud Security
  • Governance, Risk & Compliance
  • DevSecOps

Connect

Blog

Cybersecurity: A key pillar for a 360° digital experience

Mitigating risks linked to cyberattacks and protecting data is essential to survive and lead in the current era of digital transformation.

Read more
Whitepapers

Cybersecurity in your company: The 360º digital solution from Nubiral

How to develop a cybersecurity plan? Which are the main threats? Which are the best and most modern technologies to face these threats?

Read more

Partners

Solutions

AWS + Nubiral

As an Advanced Consulting Partner of the AWS Partner Network, we think outside the box, daring to go where no one has gone before.
We constantly challenge ourselves to be better, providing your company with AWS solutions in a holistic and tailored way.

Microsoft + Nubiral

As Cloud Gold Partner, we work together with Microsoft every day to offer our clients the most innovative solutions based on the different microservices and capabilities that the Azure cloud offers.
Our team is constantly training and certifying on Azure’s services.

Zabbix + Nubiral

We scale to environments with thousands of items monitored simultaneously.
We also capture data of systems and applications over time to make proactive decisions and to anticipate disruptions in business services.

Diligent + Nubiral

Nubiral and Diligent join to present a revolutionary solution that will transform the way organizations manage their GRC (Governance, Risk, and Compliance) processes.

Success Stories

Innovative Blockchain solution with Smart Contracts on AWS

The project focuses on implementing a private blockchain platform to improve transparency, security, and efficiency in deployment and development processes.

Read more

A medical center implements a chatbot and cognitive services

Improvement in patient care times and reduction in administrative staff dedication costs for routine tasks.

Read more

Implementation of monitoring solution with Zabbix

Private bank implements comprehensive Observability solution with Nubiral to optimize and gain greater visibility of its Infrastructure health.

Read more

Connect

Blog

Microsoft Fabric on Azure: Best practices for migration

The successful and careful migration of data to Microsoft Fabric on the Azure platform allows maximizing the use of data for business benefit.

Read more

Why should companies implement observability solutions?

In addition to anticipating and preventing IT infrastructure problems that impact the business, this strategy is key to boosting the user experience.

Read more

Generative AI in Oil & Gas: 5 highly complex use cases

Key applications of this new technology that contribute sustainably to the progress of the sector.

Read more

Data augmentation in images: Uses and benefits

The strategy of creating synthetic data, known as data augmentation in images, is key to obtaining the maximum added value from computer vision.

Read more

eBooks & Papers

Banking & Fintech: How to integrate GenAI in fraud detection

A guide for financial firms to discover the power of this new technology to optimize their fraud detection strategies.

Read more

Transform your business with the power of Azure OpenAI Service

How to quickly and easily create your own Copilot and Generative AI applications.

Read more

GenAI use cases with Amazon Bedrock

Discover the potential of digital transformation with Generative AI.

Read more

MLOps: powering the value of machine learning

A comprehensive guide to MLOps, a key discipline that guarantees the success of Machine Learning (ML) projects in organizations.

Read more

Connect+

Connect+ is a great tool to incorporate knowledge and stay up to date with the latest technological developments.

Access new innovative audiovisual content, quickly and easily. Explore and get to know the technological universe in a different and agile way!

Whitepapers

Machine learning recommender systems in digital media companies

Advances in machine learning enable digital media companies to improve their recommender systems and optimize user experience.

Read more

Cybersecurity in your company: The 360º digital solution from Nubiral

How to develop a cybersecurity plan? Which are the main threats? Which are the best and most modern technologies to face these threats?

Read more

Microsoft Fabric Guide: Use case end-to-end Deployment

Banks and financial services companies can benefit in numerous ways by deploying Microsoft Fabric.

Read more

How to Deploy Microsoft Fabric in Multicloud Infrastructures

Microsoft Fabric’s data analytics combined with the power of the multi-cloud architecture, drives decision making and empowers users.

Read more
Guías Técnicas

Machine learning en empresas de medios digitales

Los avances en machine learning permiten que las empresas de medios digitales mejoren sus sistemas de recomendación y optimicen la experiencia del usuario.

Home / Sistemas de recomendación con machine learning en empresas de medios digitales

1. Introducción: hacia una experiencia más personalizada

Buena parte del éxito de las empresas de medios digitales se basa en sus sistemas de recomendación. En los últimos tiempos se han convertido en una herramienta esencial para personalizar la experiencia del usuario en plataformas, comercio electrónico y redes sociales.

Estos sistemas analizan patrones de comportamiento y preferencias para sugerir productos, películas, artículos y más. Como usuarios, ya reconocemos los mensajes de las plataformas de streaming. “Si te ha gustado esto, te recomendamos…”.

Sin embargo, estamos apenas al principio del recorrido. La creciente complejidad de las preferencias de los usuarios y la expansión de los catálogos de contenido exigen enfoques más sofisticados.

Aquí es donde entran a jugar las tecnologías avanzadas de machine learning (ML) y los modelos de lenguaje de gran tamaño (LLM). Esta guía explora cómo es posible utilizar estas tecnologías para desarrollar sistemas de recomendación con los más altos niveles de precisión y personalización.

2. Fundamentos de los sistemas de recomendación

En principio, identificamos dos tipos de recomendadores.

– Filtrado colaborativo (collaborative filtering). Es el enfoque clásico. Se basa en la premisa de que si dos usuarios han tenido intereses similares en el pasado, probablemente repitan ese tipo de coincidencias en el futuro. Estos métodos utilizan la matriz de interacciones usuario-elemento para registrar y aprender de las interacciones pasadas. Sin embargo, por sí solos, pueden ser limitados, en particular cuando se encuentran con nuevos usuarios o elementos (es lo que se conoce como “problema del inicio en frío”).

– Enfoque basado en contenido (content-based filtering). A diferencia del anterior, utiliza información adicional sobre los usuarios y los elementos. Por ejemplo, en un sistema de recomendación de películas, esto podría incluir géneros, directores o actores, entre otras variables. Estos métodos pueden ofrecer recomendaciones más personalizadas. Esto se debe a que consideran las características específicas de los elementos que le han parecido atractivos a cada uno de los usuarios en el pasado.

3. Nuevas tecnologías: LLM y embeddings

Pero en un mundo en el que las tecnologías evolucionan a gran velocidad, emergen innovaciones que están llamadas a cambiar las reglas del juego. Los sistemas de recomendación alcanzan nuevos niveles.

– LLM: la comprensión del lenguaje natural. Estos modelos, entre los que se encuentran GPT, Bert o Titan, son revolucionarios. En especial, por su capacidad para entender y generar un lenguaje natural.

Basados en la arquitectura transformer, pueden procesar secuencias de palabras, capturando contextos y relaciones complejas. En los sistemas de recomendación, juegan un papel esencial a la hora de entender mejor las descripciones, las reseñas y los metadatos. Así, proporcionan una comprensión más profunda, tanto del contenido como de las preferencias del usuario.

– Embeddings: la captura del sentido semántico. Los embeddings son representaciones vectoriales de texto que capturan significados semánticos y relaciones contextuales. En un sistema de recomendación, convertir descripciones de elementos y preferencias de usuarios en embeddings permite calcular similitudes y diferencias de manera eficiente. Esto no solo mejora la precisión de las recomendaciones sino que también ayuda a superar el “problema del inicio en frío”. Esto es gracias a que permite comparaciones con elementos o usuarios nuevos. Veamos cómo se aplica puntualmente a la industria de medios digitales. Estas empresas disponen de información valiosa de sus contenidos tanto en la sinopsis como en el metadata. Por ejemplo, los actores que participan en cada episodio de cada serie o en cada película. Los embeddings nos permiten capturar toda esta información para producir un sistema más asertivo.

 

4. Implementación práctica

¿Cuáles son los pasos a seguir?

– Integración de LLM en los sistemas de recomendación. Para hacerlo, en principio es necesario ajustar un modelo preentrenado con los datos propios de la organización. Además de haber sido preentrenados con una vasta cantidad de contenido, muchos de estos modelos nos permiten realizar un ajuste fino (también conocido como fine tuning). Esto implica adaptar ese entrenamiento para que se ajuste a los datos organizacionales. De esta manera, es posible entrenar estos modelos con los datos históricos de los usuarios para que puedan aprender sobre sus gustos y, a partir de eso, predecir cuál va a ser el próximo contenido a elegir por cada uno de ellos. Así se conforma el sistema de recomendación.

– Construcción y utilización de embeddings. Para construir un enfoque basado en contenido, contamos con la ayuda de los embeddings. Son los que nos permiten transformar los textos relativos al contenido (descripciones, reseñas, entre otros) en vectores numéricos. Para eso, utilizan un modelo específico, como Ada o Titan. A partir de eso, logramos mapear todos nuestros ítems disponibles en un mismo espacio, pero siempre manteniendo la diferencia semántica entre ellos. Luego, es posible emplear estos embeddings para alimentar algoritmos de aprendizaje automático que predigan las preferencias de los usuarios. Por ejemplo, calcular la similitud coseno entre el vector que representa al usuario a cada vector que representa cada contenido diferente, recomendando así aquellos más cercanos en el espacio semántico y por ende los que tienen una mayor similitud con el perfil del usuario.

5. ¿En qué puede ayudar un recomendador a tu app?

Las empresas de medios digitales que incorporan un recomendador en sus app acceden a los siguientes beneficios:

– Priorizar la experiencia del usuario. Efectivamente, el usuario queda en el centro de la estrategia, ya que el contenido que se le sugiere es preciso y oportuno según sus gustos, necesidades y comportamientos. Así, se incrementan los niveles de lealtad y satisfacción.

– Mejor consumo estratégico de los contenidos. Combinado con las necesidades específicas del negocio, el recomendador puede impulsar el consumo de determinados contenidos estratégicos con un alto nivel de precisión.

– Sistemas más performantes. En Nubiral trabajamos en desarrollar un sistema de recomendación que se enfoque en estas nuevas tecnologías. ¿Qué logramos comprobar?En principio, que de esta forma se obtienen sistemas más performantes. Aprovechamos la capacidad que tiene esta nueva tecnología para capturar el sentido semántico e incluir información sobre el contenido. Esta, muchas veces viene dada en lenguaje natural, como la sinopsis o las críticas de los usuarios. Eso nos permitió construir un recomendador que considere toda la información disponible, tanto de los usuarios como del contenido disponible a recomendar. Luego de hacer pruebas en escenarios con usuarios y transacciones reales, logramos mejorar en hasta un 20% la tasa de clics realizadas por los usuarios sobre las recomendaciones. En otras palabras, obtuvimos un recomendador un 20% más asertivo.

6. Conclusiones: mirando hacia el futuro

Los sistemas de recomendación son una parte integral de la experiencia del usuario y su importancia seguirá creciendo en la medida en que lo hagan las plataformas digitales.

Las nuevas tecnologías, como ya hemos visto, ofrecen una promesa significativa para mejorar la precisión y la personalización de estas recomendaciones.

Sin embargo, es vital abordar este concepto con un enfoque equilibrado, reconociendo tanto sus potencialidades como sus limitaciones.

El campo de ML y los sistemas de recomendación están en constante evolución. Las empresas de la industria de los medios digitales necesitan mantenerse actualizadas en este sentido si quieren continuar teniendo éxito en su negocio.

Nuestros expertos pueden ayudarte a obtener el máximo valor de estos avances tecnológicos. Estamos esperando tu contacto: ¡Agenda tu reunión!

Sistemas de recomendación con machine learning en empresas de medios digitales


  1. Introducción: hacia una experiencia más personalizada

Buena parte del éxito de las empresas de medios digitales se basa en sus sistemas de recomendación. En los últimos tiempos se han convertido en una herramienta esencial para personalizar la experiencia del usuario en plataformas, comercio electrónico y redes sociales.

Estos sistemas analizan patrones de comportamiento y preferencias para sugerir productos, películas, artículos y más. Como usuarios, ya reconocemos los mensajes de las plataformas de streaming. “Si te ha gustado esto, te recomendamos…”.

Sin embargo, estamos apenas al principio del recorrido. La creciente complejidad de las preferencias de los usuarios y la expansión de los catálogos de contenido exigen enfoques más sofisticados.

Aquí es donde entran a jugar las tecnologías avanzadas de machine learning (ML) y los modelos de lenguaje de gran tamaño (LLM). Esta guía explora cómo es posible utilizar estas tecnologías para desarrollar sistemas de recomendación con los más altos niveles de precisión y personalización.

 

  1. Fundamentos de los sistemas de recomendación

En principio, identificamos dos tipos de recomendadores.

 – Filtrado colaborativo (collaborative filtering). Es el enfoque clásico. Se basa en la premisa de que si dos usuarios han tenido intereses similares en el pasado, probablemente repitan ese tipo de coincidencias en el futuro. Estos métodos utilizan la matriz de interacciones usuario-elemento para registrar y aprender de las interacciones pasadas. Sin embargo, por sí solos, pueden ser limitados, en particular cuando se encuentran con nuevos usuarios o elementos (es lo que se conoce como “problema del inicio en frío”).

– Enfoque basado en contenido (content-based filtering). A diferencia del anterior, utiliza información adicional sobre los usuarios y los elementos. Por ejemplo, en un sistema de recomendación de películas, esto podría incluir géneros, directores o actores, entre otras variables. Estos métodos pueden ofrecer recomendaciones más personalizadas. Esto se debe a que consideran las características específicas de los elementos que le han parecido atractivos a cada uno de los usuarios en el pasado.

 

3. Nuevas tecnologías: LLM y embeddings

Pero en un mundo en el que las tecnologías evolucionan a gran velocidad, emergen innovaciones que están llamadas a cambiar las reglas del juego. Los sistemas de recomendación alcanzan nuevos niveles.

– LLM: la comprensión del lenguaje natural. Estos modelos, entre los que se encuentran GPT, Bert o Titan, son revolucionarios. En especial, por su capacidad para entender y generar un lenguaje natural.

Basados en la arquitectura transformer, pueden procesar secuencias de palabras, capturando contextos y relaciones complejas. En los sistemas de recomendación, juegan un papel esencial a la hora de entender mejor las descripciones, las reseñas y los metadatos. Así, proporcionan una comprensión más profunda, tanto del contenido como de las preferencias del usuario.

Embeddings: la captura del sentido semántico. Los embeddings son representaciones vectoriales de texto que capturan significados semánticos y relaciones contextuales. En un sistema de recomendación, convertir descripciones de elementos y preferencias de usuarios en embeddings permite calcular similitudes y diferencias de manera eficiente. Esto no solo mejora la precisión de las recomendaciones sino que también ayuda a superar el “problema del inicio en frío”. Esto es gracias a que permite comparaciones con elementos o usuarios nuevos. Veamos cómo se aplica puntualmente a la industria de medios digitales. Estas empresas disponen de información valiosa de sus contenidos tanto en la sinopsis como en el metadata. Por ejemplo, los actores que participan en cada episodio de cada serie o en cada película. Los embeddings nos permiten capturar toda esta información para producir un sistema más asertivo.

 

  1. Implementación práctica

¿Cuáles son los pasos a seguir?

– Integración de LLM en los sistemas de recomendación. Para hacerlo, en principio es necesario ajustar un modelo preentrenado con los datos propios de la organización. Además de haber sido preentrenados con una vasta cantidad de contenido, muchos de estos modelos nos permiten realizar un ajuste fino (también conocido como fine tuning). Esto implica adaptar ese entrenamiento para que se ajuste a los datos organizacionales. De esta manera, es posible entrenar estos modelos con los datos históricos de los usuarios para que puedan aprender sobre sus gustos y, a partir de eso, predecir cuál va a ser el próximo contenido a elegir por cada uno de ellos. Así se conforma el sistema de recomendación.

– Construcción y utilización de embeddings. Para construir un enfoque basado en contenido, contamos con la ayuda de los embeddings. Son los que nos permiten transformar los textos relativos al contenido (descripciones, reseñas, entre otros) en vectores numéricos. Para eso, utilizan un modelo específico, como Ada o Titan. A partir de eso, logramos mapear todos nuestros ítems disponibles en un mismo espacio, pero siempre manteniendo la diferencia semántica entre ellos. Luego, es posible emplear estos embeddings para alimentar algoritmos de aprendizaje automático que predigan las preferencias de los usuarios. Por ejemplo, calcular la similitud coseno entre el vector que representa al usuario a cada vector que representa cada contenido diferente,  recomendando así aquellos más cercanos en el espacio semántico y por ende los que tienen una mayor similitud con el perfil del usuario.

 

  1. ¿En qué puede ayudar un recomendador a tu app?

Las empresas de medios digitales que incorporan un recomendador en sus app acceden a los siguientes beneficios:

Priorizar la experiencia del usuario. Efectivamente, el usuario queda en el centro de la estrategia, ya que el contenido que se le sugiere es preciso y oportuno según sus gustos, necesidades y comportamientos. Así, se incrementan los niveles de lealtad y satisfacción.

Mejor consumo estratégico de los contenidos. Combinado con las necesidades específicas del negocio, el recomendador puede impulsar el consumo de determinados contenidos estratégicos con un alto nivel de precisión.

– Sistemas más performantes. En Nubiral trabajamos en desarrollar un sistema de recomendación que se enfoque en estas nuevas tecnologías. ¿Qué logramos comprobar?En principio, que de esta forma se obtienen sistemas más performantes. Aprovechamos la capacidad que tiene esta nueva tecnología para capturar el sentido semántico e incluir información sobre el contenido. Esta, muchas veces viene dada en lenguaje natural, como la sinopsis o las críticas de los usuarios. Eso nos permitió construir un recomendador que considere toda la información disponible, tanto de los usuarios como del contenido disponible a recomendar. Luego de hacer pruebas en escenarios con usuarios y transacciones reales, logramos mejorar en hasta un 20% la tasa de clics realizadas por los usuarios sobre las recomendaciones. En otras palabras, obtuvimos un recomendador un 20% más asertivo.

 

  1. Conclusiones: mirando hacia el futuro

Los sistemas de recomendación son una parte integral de la experiencia del usuario y su importancia seguirá creciendo en la medida en que lo hagan las plataformas digitales.

Las nuevas tecnologías, como ya hemos visto, ofrecen una promesa significativa para mejorar la precisión y la personalización de estas recomendaciones.

Sin embargo, es vital abordar este concepto con un enfoque equilibrado, reconociendo tanto sus potencialidades como sus limitaciones.

El campo de ML y los sistemas de recomendación están en constante evolución. Las empresas de la industria de los medios digitales necesitan mantenerse actualizadas en este sentido si quieren continuar teniendo éxito en su negocio.

Nuestros expertos pueden ayudarte a obtener el máximo valor de estos avances tecnológicos. Estamos esperando tu contacto: ¡Agenda tu reunión!

 

Completa el formulario y contáctate con nuestros expertos.

Analía Laura Enrique

About Analía Laura Enrique